
Topological sort 
 

The problem of topological sorting of a graph is to indicate such a linear order on 

its vertices so that any edge leads from a vertex with a lower number to a vertex with a 

higher number. Obviously, if there are cycles in the graph, then there is no such order. 

 

Example. Consider a graph that does not contain cycles: 
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Sort topologically its vertices: 2, 3, 5, 4, 6, 1. 

4 62 53 1

 
Тheorem. An acyclic graph always has a vertex without incoming edges. 

Proof. Assume the opposite, let an edge enters each vertex. For an arbitrary vertex 

x, we denote one of these edges by (prev[x], x). The sequence x, prev[x], prev2[x], … is 

infinite, and the number of vertices in the graph is finite. Consequently, some vertex y 

will occur twice in this sequence. Consider the part of this sequence between 

repetitions: y, prev[y], prev2[y], …, y. Expanding this sequence in the opposite direction, 

we get a cycle in the graph. We came to a contradiction.  

 

Perform a topological sort of the vertices. The very first vertex in this topological 

order hasn’t incoming edges. 

 

Theorem. The topological sort of vertices in a graph is possible if and only if it 

does not contain cycles. 

 

Topological sort implementation using depth first search 

The problem of topological sort can be solved using depth first search. Initially, all 

vertices are white. When the dfs enters the vertex, it becomes gray. When the vertex is 

processed, it turns black. The order of the vertices in a topological sort is the inverse 

order in which the vertices become black. 

 

The complexity of topological sort algorithm equals to the time it takes to traverse 

all the vertices of the graph using dfs algorithm, that is O(n + m). 



 

Example. Start a depth first search on the graph. Next to each vertex v, place the 

labels d[v] / f[v]. To determine the topological sort order, one should sort the graph 

vertices in descending order of labels f[v]. 
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The first vertex to be colored black will be 1. It will be the last vertex in 

topological order. The second vertex colored black will be 6. The last will be vertex 2. 
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E-OLYMP 1948. Topological sort The directed unweighted graph is given. Sort 

topologically its vertices. 

► Topological sorting is performed using the depth first search. Initially, all 

vertices are white. When the dfs enters the vertex, it becomes gray. When the vertex is 

processed, it turns black. The order of the vertices in a topological sort is the inverse of 

the order in which the vertices become black. That is, the first (last) fully processed 

vertex in dfs will be the last (first) in the topological sort. 

The vertices of a graph cannot be topologically sorted if there is a cycle in the 

graph. Since the graph is directed, there should be no edges going to the gray vertices 

during dfs. 

 

The graph shown in the sample, has the form: 

21

4 56

3

1 / 6 2 / 5

3 / 4

7 / 8

9 / 12 10 / 11
 

https://www.e-olymp.com/en/problems/1948


Place the labels d[v] / f[v] near each vertex v. Topologically sorted vertices are 

arranged in descending order of labels f[v]. 
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Since the number of vertices in the graph is large, store the graph as an adjacency 

list g. Store the vertex labels in the array used: 

 used[i] = 0, if vertex i is not visited yet (vertex is white); 

 used[i] = 1, if vertex i is visited already, but its processing is not finished yet 

(vertex is gray); 

 used[i] = 2, if vertex i is processed already (vertex is black); 

Store the vertices in array top in the order of completion of their processing during 

dfs. 
 
vector<vector<int> > g; 

vector<int> used, top; 

 

Function dfs implements the depth first search from the vertex i. 
 

void dfs(int i) 

{ 

 

We entered the vertex i. Make it gray. 
 

  used[i] = 1; 

 

Iterate over the vertices to, where we can go from i. 
 

  for(int j = 0; j < g[i].size(); j++) 

  { 

    int to = g[i][j]; 

 

If the directed edge (i, to) goes to the gray vertex, then graph contains a cycle. 
 

    if (used[to] == 1) Error = 1; 

 

If the vertex to is not visited yet, run recursively dfs from it. 
 

    if (used[to] == 0) dfs(to); 

  } 

 

Finish processing the vertex i. Make it black and add it to the array top. 
 

  used[i] = 2; 

  top.push_back(i); 

} 

 

The main part of the program. Read the input data. Construct the adjacency list of 

the graph. 



 
scanf("%d %d",&n,&m); 

g.resize(n+1); used.resize(n+1); 

 

for(i = 0; i < m; i++) 

{ 

  scanf("%d %d",&a,&b); 

  g[a].push_back(b); 

} 

 

Run the depth first search on directed graph. 
 

for(i = 1; i <= n; i++) 

  if (!used[i]) dfs(i); 

 

If graph contains a cycle (during dfs Error = 1 is set), then print -1. 
 

if (Error) printf("-1"); 

else 

 

Print the vertices of the graph in the reverse order of the one in which they were 

pushed into the array top. 
 

  for(i = n - 1; i >= 0; i--) 

    printf("%d ",top[i]); 

 

printf("\n"); 

 

Topological sort implementation using Kahn algorithm 

Compute the incoming degree for each vertex. Push the vertices with zero 

incoming degree into the queue. While the queue is not empty, pop the vertex out of the 

queue and add it to the end of the topological order. For each vertex v removed from the 

queue, simulate the removal of all edges (v, u) outgoing from it. That is, for each such 

edge, the incoming degree of the vertex u should be decreased by one. If after this 

reduction the incoming degree of the vertex u becomes zero, push u into the queue. The 

algorithm runs until the queue becomes empty. If all the vertices have been queued, 

then the topological order is constructed. Otherwise, after removing some vertices, we 

get a graph without vertices of degree zero. This is possible only if there is a cycle in the 

graph. In this case there is no topological ordering. 
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The input graph is stored in the adjacency list graph. Store the incoming degrees of 

vertices in the array InDegree. Push the topologically sorted vertices of the graph into 

the array top. 
 

vector<vector<int> > graph; 

vector<int> InDegree, top; 

deque<int> q; 

int i, j, a, b, n, m, v, to; 

 

Read the input graph. 
 

scanf("%d %d",&n,&m); 

graph.assign(n+1,vector<int>()); 

InDegree.assign(n+1,0); 

for(i = 0; i < m; i++) 

  scanf("%d %d",&a,&b),graph[a].push_back(b); 

 

Iterate over all the edges of the graph. Compute the incoming degrees of all 

vertices. For each edge (i, to) increase InDegree[to] by 1. 
   

for(i = 1; i < graph.size(); i++) 

  for(j = 0; j < graph[i].size(); j++) 

  { 

    to = graph[i][j]; 

    InDegree[to]++; 

  } 

 

Push all vertices with incoming degrees zero into the queue q. 
 

for(i = 1; i < InDegree.size(); i++) 

  if (!InDegree[i]) q.push_back(i); 

 



Continue the algorithm until the queue q is not empty. 
   

while(!q.empty()) 

{ 

 

Pop the vertex v from the queue and push it to the end of the topological order. 
  

  v = q.front(); q.pop_front(); 

  top.push_back(v); 

 

Delete the edges (v, to) from the graph. For each such edge decrease the input 

degree of the vertex to. If the degree of the vertex to becomes zero, push it into the 

queue, from where it will be pushed into the topological order list. 
 

  for(i = 0; i < graph[v].size(); i++) 

  { 

    to = graph[v][i]; 

    InDegree[to]--; 

    if(!InDegree[to]) q.push_back(to); 

  } 

} 

 

If not all n vertices are pushed into the array top, then graph contains a cycle and 

topological sort is impossible. 
 

if (top.size() < n)  

  printf("-1\n"); 

else 

{ 

 

Print the vertices of the graph in topological order. 
 

  for(i = 0; i < top.size(); i++) printf("%d ",top[i]); 

  printf("\n"); 

} 

 


